Unit 2 - Chapter 5

TABLE 5				for Fla	Replac	Hard Work	
		Index and	Recomm	Moderate Work		Work/Rest*	Water Per Hour
		Easy Work			Water Per Hour		
HeatCategory	wBGT ${ }^{\text {F }}$		Water Per Hour	Work/Rest*		40/20 min	3/4 9t.
				No limit	3/49t.	$30 / 30 \mathrm{~min}$	1 qt
	78-81.9	No limit	$1 / 2 \mathrm{qt}$	50/10 min	3/4.	$30 / 30 \mathrm{~min}$	1 qt .
2	82-84,9		3, 9	$40 / 20 \mathrm{~min}$	3/4.9.	$20 / 40$ min	1 qt .
3	85-879		3/6at.	$30 / 30 \mathrm{~min}$	3/4 at.	50 m	$1 \mathrm{qt}$.
4	88-89.9	No limit		$20 / 40 \mathrm{~min}$	19 t .		
5	290			sould be acco	uished		

sun is bright, and the temperature and relative humidity are high. But it is certainly true that various forms of heat illness, inclucing heat syncope and exercise, associated muscle (heat) cramps, heat exhaustion, and heatstroke, can occur whe ${ }^{17}$
Heat Syncope Heat syncope, or heat collapse, is associated with rapid physical fatigue during overexposure to heat. It is usually caused by standing in heat for long periods or by not being accustomed to exercising in the heat. It is caused by peripheral
vasodiation of superficial vessels, hypotension, or a pooling of blood in the extremities, which results in dizziness, fainting, and nausea.
Treatment Heat syncope is quickly relieved by laying Treatment Heat syncope is quickly relieved by laying
the athlete down in a cool environment, elevating the lower extremities, and replacing fluids. 53
Exercise Associated Muscle (heat) Cramps Exercise associated muscle cramps are Cramps Exercise muscle cramps that occur during or after exercise most commonly in the calf and abdomen, although any muscle may be involved. (Table 5-2) Other symptoms may include pain, dehydration, thirst sweating, or fatigue.

Heat cramps occur due to muscle overload and fatigue

- ance heat cramps has been traditionally tributed to excessive loss of water and depletion electrolytes or ions (sodium, chloride, potassium, magnesium, and calcium) by sweating. Profuse sweating involving losses of large amounts of water and small quantities of these ions was thought to interfere with the concentration of these elements within the body resulting in painful muscle contractions and cramps. ${ }^{25}$ However, more recent evidence suggests that cramping may be more likely due to altered neuromuscular control that occurs with muscle overload and fatigue rather than a fluid and/ or electrolyte imbalance. Muscle cramps appear to occur most often in those muscle groups under high demand during the activity. Muscle fatigue alters neuromuscular control thus facilitating a reflex contraction or cramp of the muscle. ${ }^{46}$
reatment The most current recommendation for mmediate treatment of exercise-associated muscle cramps is ingestion of fluids, preferably a sports drink, and mild, prolonged stretching with ice massage of the cramping muscle. Whit in wit fluids and electrolytes may not necess gestion of muscle cramps it is certainly critical any preven ther exertional heat illnesses ${ }^{6}$ A verexertion during ilnesses. ${ }^{6}$ Avoiding fatigue and kelihood of altered neurce may reduce the athlete who attered neuromuscular control. ${ }^{56}$ An difficulty returning exiences muscle cramps may have remainder of the to practice or competition for the reoccur with physical exertionse cramping is likely to

It is sometimes possible to spot athletes who are having problems with heat exhaustion. Sometimes but not always they may begin to develop heat
cramps. They may become disoriented and light cramps. They may become disoriented and lightheaded, and their physical performance will not be
up to their usual standards when fluid replacement up to their usual standards when fluid replacement
has not been adequate. In general, persons in poor physical condition who attempt to exercise in the heat are most likely to get heat exhaustion.
Treatment An athlete who has exertional heat exhaustion must be immediately removed from play and taken to a shaded or air-conditioned area. Excess
clothing or equipment should be removed clothing or equipment should be removed, and the
athlete should lie down with his or her legs elevated ∇ Rehydration should begin immediately with water or a sports drink as long as the athlete is not nauseated or vomiting. If the athlete cannot take fluids orally, intravenous fluid replacement should be initiated by a physician. It is essential to obtain an accurate core
temperature. A rectal temperature. A rectal temperature is the most
accurate indicato of core temperature to heat exhaustion from heatstroke. ${ }^{3}$. Oral and tymiate membrane thermometers do not provide an accurate reading of actual core temperature. ${ }^{26}$ Cooling efforts to $1022^{\circ!6}$ continue until rectal temperature has lowered 102:-
Exertional Heatstroke Unlike heat cramps and heat emergency heatstroke is a serious, life-threat heat emergency (Table $5-2)^{14}$ The specific
heatstroke is characterized by sudden cowever, it is clinically consciousness; flushed collapse with alteration of seen with heast exhousstion: skin; less sweating than is strong pulse; and, most impoltlow breathing; a rapid of 105° F or higher. ${ }^{4}$ Basically hant, a core temperature 118 Iniuyylllness Prevention and Weathestroke is a breakdown
of the thermoregulatory mechanism caused by excessively high body
ability to dissipate heat through sweating. ${ }^{14}$ Heatstroke can occur suddenly and without warning The athlete may or may not show signs of hea cramps or heat exhaustion. The possibinty of death from heatstroke can be significantly reduced if
body temperature is lowered to 102° or less within body temperature is lowered to 102 or less with 30 minutes is elevated to $105^{\circ} \mathrm{F}$ or higher, the higher the mortality rate. ${ }^{17}$

```
Managing heatstroke requires a heroic effort to lower body temperature.
```

Treatment The key to managing this condition is aggressive and immediate whole-body cooling Afte determining rectal temperature and assessing airwa breathing, and circulation, immediately immerse the athlete in a cold water bath ($35-58^{\circ}$) up to thei is not and then remove equipment and clothing. ${ }^{13}$ Ifit sponge him ore a towel. Alsor her down with cool water and fan with over other mags may be placed at the neck, and squad. It is importerial vessels. ${ }^{51}$ Call the rescue to a hospital as quictyat the victim be transported recommended quickly as possible. However, it is until the temperature victim be cooled down firs transported if medical supervision rapid cooling and adequate Preve available. ${ }^{3}$

Preventing Heat Illness

II is essential to uness
 preventable. Exercising cond that heat illness is suggeep heat illnesses frommon sense and caution

 practice or should be considurring. ${ }^{8}$ The following practice or competitive prograred when planninga

period in the afternoon. c period may take a minimum of 10 to 14 mplete -dim mitizationsiderations and modifications may. 14 days. . 5

find ing pering Susceptible Individuals Athletes with
infiting sce mass are particularly prone to heat
dien
muscle 1090 muscle build must be considered when
 delemeight individuals may have as much as - 18 percent greater heat procuction than underweight 180 diduls because metabolic heat is produced
nividur poportionately victims tend to be overweight. Death natheat ilintro increases at a ratio of approximately from heatstroke to one as body weight increases. ${ }^{47}$
fourit
women are apparently more physiologically efficient Women a temperature regulation than are in body women possess as many heat-activated Athoug geands as men do, they sweat less and manifest sweager heart rate when working in heat. ${ }^{39}$ Although sight differences exist, the same precautionary sight diferenty to both genders.
ather individuals who are susceptible to heat stress inlude children and older adults, those with relatively poor fitness levels, those with a history of heat illness, poor finesse with a febrile condition."
Keeping Weight Records Careful weight records of al payers must be kept. Weights should be measured both before and after practice for at least the firist 2 weeks of practice. If a sudden increase in temperature andor humidity occurs during the season, weigh should be recorded again for a time. A loss of 2 percer of body weight reduces blood volume and could that toa health threat. ${ }^{41}$ A rule should be estabished the athlete should be held out of practice until norma body weight has been regained.
Uniforms Uniforms should be selected on the basis Uniforms Uniforms should be selected onperature and humidity. Initial practices should beconducted in light-colored, short-sleeved T-shirts, shorts, and socks, moving gradually into shortshorts, and socks, moving graduals, and socks as
seeved net jerseys, lightweight pants, sleclimatization proys, lightweight pants, all early-season practices and games proceeds. All ealy in lightweight and games should be conducted in iorms. unt worn by the Because of the specialized equires particular conside players, football requires pents, the helimet shion. In hot, humid environmens ible. helmet should be removed as often

antin
 Recommendations for preventing heat illness

- Ensure that appropriate medical care is available.
 Creparticipation expanhs tician-supervised

 individuals.- Acclimatize athletes over 10 to 14 days.
- Educate athletes and coaches regarding prevention,
recogntion, and treat
- Educogition, and treatment of heat illnesses.
- Educate athletes to balance fluid intake with sweat
- Encourage athletes 10 maintain adequate hydration.
in a cool environment.
in a cool environment.
guidelines for altering practice sessions based on
those conditions.
- Provide an adequate supply of water or sports
drinks to maintain hydration drinks to maintain hydration.
Weigh high-risk athetes before and after practice to make certain they are not dehydrated. - Minimize the amount of equilp,
worn in hot, humid conditions.
- Minimize warm-up time in hot, humid conditions. - Allow athietes to practice in shaded areas, and use - Alow atneetes to practice cooling fans when possible.
- Have appropriate emergency equipment available (e.g., fluids, ice, immersion tank, rectal thermometer cell phone or two-way radio).
*From Casa D, et al:. National Athletic Trainers' Association Position Statement: Exertional heat illness.
Journal of Athletic Training 50(9):986-1000, 2015 .
(50x 5-2 provides recommendations for Focus Box $5-2$ Reavs.

Hypothermia

adjunct to many outdoor cold weather is a equert itself does not require heavy sports in which the spor consequently, the weather protective clothing; factor in injury susceptibility ${ }^{10}$ proteclis a pertinent factor in injury self enables the
becomes In most instances, the metabolic rate sufficiently for athlete to normal physiological functions Factors That Lead to Iniury 121

> resulting heat and perspiration through the usual $\begin{aligned} & \text { esuring hical mechanisms.9 An athete may fail to } \\ & \text { physiologicil } \\ & \text { maticicienty or may become chilled because }\end{aligned}$ $\begin{aligned} & \text { physiological mectaon may become chilled because } \\ & \text { warm up sufficienty or varing periods demanded by }\end{aligned}$ $\begin{aligned} & \text { of relative inactivity for varying periods dmpetition or } \\ & \text { the particular sport, during either comedisposed to }\end{aligned}$ the particular sport, durng ethlete is predispos rraining. Consequen ly hypothermia or a owered body temperature." Low temperatures alone can pose some problems, but when such temperatures are further accenter (Figure $5-4)^{48}$ by wind, the chill factor becom wetness, further increases
A thind factor, dampness or the risk of hypothermia. Air at a temperature of $50^{\circ} \mathrm{F}$ is relatively comfortable, but water at the same temperature is intolerable. Certainly the combination of cold, wind, and dampness creates an end.
that easily predisposes the athlete to hypothermia. ${ }^{24}$

```
Many sports played in cold
weather do not require
heavy protective clothing
l}\begin{array}{l}{\mathrm{ thus, weather becomes a}}\\{\mathrm{ factor in injury susceptibility.}}
```

As muscular fatigue builds up during strenuous physical activity in cold weather, the rate of exercise begins to
drop and may reach a level at which the body drop and may reach a level at which the body heat loss
to the environment exceeds the metabolic heal to the environment exceeds the metabolic heat
protection, resulting in definite neuromuscular responses and exhaustion. A relatively small drop in body core temperature can induce shivering sufficient to materially affect the athlete's neuromuscular coordination. Shivering ceases below a

ow temperatures accentuated by wind and problems for athletes.

ody temperature of $85^{\circ} \mathrm{F}$ to $90^{\circ} \mathrm{F}$ (29.4 F to 32.2° Death is imminent if the core temperature rises to 100° to $\left.29^{\circ} \mathrm{C}\right)^{.}$

Cold Disorders

Athletes need to replace fluids when working out in a cold environment as much as they do in a hot
 volume, less fluid is available for warming the tissues, Athletes performing in a cold environment should be weighed before and after practice, especially in the first 2 weeks of the season. Seve ove exposure to a cold climater of winter sports, long-distance running in cold weather, and swimming in cold water. ${ }^{19}$
Frostnip Frostnip involves ears, nose, cheeks, chin fingers, and toes. It commonly occurs during a high

```
Cold injuries in sports
include:
Frostnip
Frostbite
Frostbite
```


[^0]> FIGURE 5-4 Wind chill factor. Low temperatures can pose serious problems for the athete, but wind hill could be a critical factor
could be a critical factor.

Safety in Lightning and
 Thunderstorms

Research indicates that lightning is the numberthree

 cause of death by weather phenomena, accounfing cause of dealhs per year. ${ }^{33}$ As a result of the inheremgfor 30 death danger associated with electrical storms to athletes and staff who practice and compete outdoors, each institution shoula deveuld be implemented in case of of plan. lightning storm, that includes establishing a chain of of command to determine who should montor both th weather forecast and to determine who makes the a threatening nature, and from and ultimately to return decision both the practice field, based on specific a team
If you hear thunder or see lightning, you are immediate danger and should seek a protective shelter in an indoor facility at once. An indoor facility is recommended as the safest protective shelter,
However, if an indoor facility is not available, automobile (not a convertible) is a relatively safe alternative.
If neither of these is available, the following guidelines are recommended: 5 .2.8.,3

- Avoid standing near large trees, flagpoles, or ligh poles.
Additional unsafe locations include ermed shelters, such as picnic, park sus and rain nonmetal shelters and ptora, sun, bus, Open areas such as tents, dugots, restern stands, gazebos, screened dugouts, refreshment and open garages are unsafe. Peop inages are unsafe.
showers, side a building should not use plumbing showers, sinks, locker rooms, indoor pools,
thunder can be heard, lightering an electrical storm. be a potential danger and eving is close enough to safe location. The and everyone should move to o see lightning coming and havion that it is possible strikes could prove to and have time to act before il lightning strike, it has already hit. When you see the Specific criteria
for both suspending guidelines should be developed Emergency Action play and resuming activity in the watch the sky lon Plan. The athletic trainer should watch the sky looking for approaching trainer should

Any of these changes may have a negative effect on athletic performance and may predispose the athiete
to injury. ${ }^{5}$ The negative effects of jet lag can be to injury, ${ }^{59}$ The negative effects of jet lag can be reduced by paying attention
Box $5-3$: "Minimizing the effects of jet lag."

Altitude IIInesses

At higher altitudes the amount of oxygen in the air is less than at sea level. The higher the altitude the lower the percentage of avaiable oxygen. When te
body is suddenly without its usual oxygen supply, there are an insufficient number of red blood cells to adequately capture the available oxygen in the air
This becomes an issue when an athlete goes to an This becomes an issue when an athlete goes to an
area of high altitude to train and compete.29 Over time the body will adjust by forming additional red blood cells to carry more oxygen. Some experts believe this may take 2 to 3 weeks to occur, while others maintain that the athlete can adjust days. Athletic trainers must understand that some of their athletes may become ill when suddenly subjected to high altitudes. These illnesses include acute mountain sickness, high altitude pulmonary edema (HAPE), high altitude cerebral edema (HACE), Symptoms of these nausea, vomiting, sleep disturbance, dyse headache, weakness, mental dysfunction, and unconsciousngh, For those who have sickle-cell trait when the abnormal hemoglobin molecules become deoxygenated as a esult of exercise at a high altitude, the cells tend to licklp together. This process causes an abnormal destroyed easily This ced blood cell, which can be spleen, which has beenition can cause an enlarged altitudes. ${ }^{58}$
The treatern
lower altitude as soon as possible the athlete to a The condition rapidly resolves possle and give oxygen. lower altitude. s8 8 sidly resolves once the athlete is at a

Air Pollution

Air pollution is a significant problem everywhere in
the world but particularly in und industries and hearicularly in urban areas with large athletes are outside for long perile traffic. Because 126 Iniuryillness competition, they may be during 126 Injuyyllliness Prevention and Welley may be more -

Focis Box 5-3

Minimizing the effects of jet lag

- Depart for a trip well rested.
- Preadiust circadian rhythms by getting up and going to bed 1 hour later 10 each
when traveling west and 1 hour earlier for each trosed zone crossed when traveling east.
When traveling west, eat light meals early and heavy meals late in the day. When traveling east, eat a heavy meal earlier in the day. occurs because of dry, high-altitude, low-humidity cabin air
Consume caffeine in coffee, tea, or soda when traveling west. Avoid caffeine when traveling east (Caffeine is only a mild diuretic and causes no Exercise or training should be done later in the water) traveling west and earlier in the day if traveling dast Reset watches according to the new time zone atter boarding the plane.
If traveling west, get as much sunlight as possible on arrival.
On arrival, immediately adopt the local time schedule time it is where yound sleeping. Forget aboutwhat void using a you came from. Avoid using alcohol before, during, and after travel.
susceptible to the effects of air pollution than is pedentary individual who remains indoors. ${ }^{42}$ Th nitrogen of greatest concern include and particuxide, carbon monoxide, sulfer dioxide molds, ashes, matter (e.g. dirt, soil dust, pollen molds, ashes, soot).
and smog. Photoch of poliution. photochemical haze dioxide and stagnant to produce ozone ${ }^{51}$, combination of carbon mog is produced by the particulate matter that manate, sulfur dioxide, and fooal and petroleum ${ }^{42}$ anates from the combustion

Symptoms

When exposed to air pollution, the athlete mar tightness, pain durins of breath, coughing, chest tightness, pain during deep breathing, coughing, chest

. 2 The sun protection factor (SPF) indicates the sunscreen's effectiveness in absorbing the sunburn-inducing radiation. An SPF of 15 indic that an athlete can be exposed to URR mefore the times longer than without a sunscreen athlete skin begins to turn red. Therefore, the athlete't eeds to understand that a higher Sion. She must indicate a greater degree
simply apply the SPF 15 sunscreen twice as is often as is necessary with an SPF 30 sunscreen.

Review Questions and Class Activitie

How do temperature and humidity cause heat illnesses?
2. Describe the symptoms and signs of the most common heat disorders.
3. What steps should be taken to avoid heat illnesses?
4. How is heat lost from the body to produce hypothermia?
5. Identify the physiological basis for the body's susceptibility to a cold disorder

Recommended References

1. Adams W, Scarneo S

Implementation of heat
econdary school athes in
Journal of Athletic Training.
52(6):S103, 2017.
2. Adams W: The timing of dertional heat stroke survival Sports Exior to collapse, Med Sci 2015.
3. American College of Sports Medicine: Position stand on Med Sci Sp fluid replacement Med Sci Sports Exercise
4. Berk

Becker T, Penzel T: First jet lag
symptoms across multer traveling
128 Iniunss multiple time zones.

5-3 As soon as lightning is observed, practice should end immediately and the athletes show seek shelter. If an indoor fack an automobile is a relatively safe alternative. The athletes should avos. Athletes shoul large trees or telephone poles. Athletes should avoid any standin
the fields.
6. Take a wet-bulb globe temperature (WBGT) using a digital psychrometer and make suggestions for safe practice guidelines
7. How should athletes protect themselves from the effects of ultraviolet radiation?
8. Create the thunder and lightning EAP for specific outdoor venue.
9. Discuss the types of equipment that can be used to prevent, and manage environmental injuryl illnesses.
0. Discuss techniques to decrease the risk of environmental injuries

Biological Rhythm Research. 46(3):361-370, 2015.
5. Bennett B: Lightning safety uidelines. In Klossner D. National collegiate athletic association sports medicic handbook, Overland Park, KS, 2011, National Collegiate KS, Athletic Association.
6. Bergeron M : Muscle during exercise - is it cramps electrolyte deficit? \mathbf{c} it fatigue Med Rep 7(4):S50-S55, Sports 7. Brocheire, F M50-S55, 2008 Wet-Bulb G, Millet, G: Is the (WBGT) Index Temperature exercise in the hevant for Medicine 45 he heat. Sports Micine 45(11):1619-1621, 2015
8. Broman D: The impleta of a protocol for the prevention and management pf exertional eat illness in sport British ournal of Sports Medicine 48(7):573, 2014.
9. Brukner P : Exercise in the cold In P. Brukner (ed.), Bruckner \& Kahn's Clinical sports medicine, th rev. ed. Sydney, Australia: 2016, McGraw-Hill
10. Burdon . Burdon C: Influence of beverage temperature on during end and fluid ingestion systematic rance exercise: A systematic review, Internationd Exeurnal of Sport Nutrition and Exercise Metabolism 22(3):199-211, 2012.

[^0]: 122 Injuyyllliness Prevention and Wellness Promotion

